Innate anti-breast cancer immunity of apoptosis-resistant human gammadelta-T cells.

Published

Journal Article

We previously identified a CD2-initiated signaling pathway which inhibits activation-induced cell death in mitogen-stimulated human gammadelta-T cells permitting the large-scale expansion of these cells. Here we report the innate anti-tumor activity of expanded human gammadelta-T cells against human breast cancer cells. Apoptosis-resistant human gammadelta-T cells which were expanded in vitro from cultured human peripheral blood mononuclear cells displayed lytic activity against breast cancer cell lines MDA-MB-231, MCF-7 and T-47D, but failed to kill normal human skin fibroblasts and normal human liver cells. Monoclonal antibodies (mAb) directed against the gammadelta-T cell receptor (TCR) or mAb directed against either the Vgamma9 or the Vdelta2 TCR chains were able to block gammadelta-T cell-mediated lysis of MDA-MB-231 cells. In addition, mAb against intercellular adhesion molecules-1 (ICAM-1/CD54) or CD18 (beta subunit of ICAM-1 counter-receptor) also blocked gammadelta-T cell-mediated killing of MDA-MB-231 cells. Ex vivo expanded human gammadelta-T cells are thus able to innately recognize and kill human breast cancer cells in a gammadelta-TCR-dependent manner; ICAM-1 and CD18 also appear to be involved in the interactions between sensitive breast cancer cells and cytolytic gammadelta-T cells. As apoptosis-resistant human gammadelta-T cells can now readily be expanded to large numbers (clinical scale), these findings must be considered in the context of developing adoptive immunotherapy strategies to exploit gammadelta-T cell innate immune responses for the primary or adjuvant treatment of breast cancer.

Full Text

Duke Authors

Cited Authors

  • Guo, BL; Liu, Z; Aldrich, WA; Lopez, RD

Published Date

  • September 2005

Published In

Volume / Issue

  • 93 / 2

Start / End Page

  • 169 - 175

PubMed ID

  • 16187237

Pubmed Central ID

  • 16187237

Electronic International Standard Serial Number (EISSN)

  • 1573-7217

International Standard Serial Number (ISSN)

  • 0167-6806

Digital Object Identifier (DOI)

  • 10.1007/s10549-005-4792-8

Language

  • eng