Magnetoactive sponges for dynamic control of microfluidic flow patterns in microphysiological systems.

Journal Article, Research Support, N.I.H., Extramural, Research Support, U.S. Gov't, Non-P.H.S.

We developed a microfluidic flow-control system capable of dynamically generating various flow patterns on demand. The flow-control system is based on novel magnetoactive sponges embedded in microfluidic flow channels. Applying a non-uniform magnetic field compresses the magnetoactive sponge, significantly reducing porosity and hydraulic conductivity. Tuning the applied magnetic field can dynamically vary the flow rate in the microfluidic channel. Pulsatile and physiological flow patterns with frequency between 1 and 3 Hz, flow rates between 0.5 and 10 μL min(-1) and duration over 3 weeks have been achieved. Smooth muscle cells in engineered blood vessels perfused for 7 days aligned perpendicular to the flow direction under pulsatile but not steady flow, similar to the in vivo orientation. Owing to its various advantages over traditional flow-control methods, the new system potentially has important applications in microfluidic-based microphysiological systems to simulate the physiological nature of blood flow.

Full Text

Duke Authors

Cited Authors

  • Hong, S; Jung, Y; Yen, R; Chan, HF; Leong, KW; Truskey, GA; Zhao, X

Published Date

  • February 7, 2014

Published In

Volume / Issue

  • 14 / 3

Start / End Page

  • 514 - 521

PubMed ID

  • 24310854

Electronic International Standard Serial Number (EISSN)

  • 1473-0189

Digital Object Identifier (DOI)

  • 10.1039/c3lc51076j

Language

  • eng

Citation Source

  • PubMed