Rem2 is an activity-dependent negative regulator of dendritic complexity in vivo.

Journal Article (Journal Article)

A key feature of the CNS is structural plasticity, the ability of neurons to alter their morphology and connectivity in response to sensory experience and other changes in the environment. How this structural plasticity is achieved at the molecular level is not well understood. We provide evidence that changes in sensory experience simultaneously trigger multiple signaling pathways that either promote or restrict growth of the dendritic arbor; structural plasticity is achieved through a balance of these opposing signals. Specifically, we have uncovered a novel, activity-dependent signaling pathway that restricts dendritic arborization. We demonstrate that the GTPase Rem2 is regulated at the transcriptional level by calcium influx through L-VGCCs and inhibits dendritic arborization in cultured rat cortical neurons and in the Xenopus laevis tadpole visual system. Thus, our results demonstrate that changes in neuronal activity initiate competing signaling pathways that positively and negatively regulate the growth of the dendritic arbor. It is the balance of these opposing signals that leads to proper dendritic morphology.

Full Text

Duke Authors

Cited Authors

  • Ghiretti, AE; Moore, AR; Brenner, RG; Chen, L-F; West, AE; Lau, NC; Van Hooser, SD; Paradis, S

Published Date

  • January 8, 2014

Published In

Volume / Issue

  • 34 / 2

Start / End Page

  • 392 - 407

PubMed ID

  • 24403140

Pubmed Central ID

  • PMC3870928

Electronic International Standard Serial Number (EISSN)

  • 1529-2401

Digital Object Identifier (DOI)

  • 10.1523/JNEUROSCI.1328-13.2014


  • eng

Conference Location

  • United States