Locally Adaptive Bayes Nonparametric Regression via Nested Gaussian Processes.

Journal Article (Journal Article)

We propose a nested Gaussian process (nGP) as a locally adaptive prior for Bayesian nonparametric regression. Specified through a set of stochastic differential equations (SDEs), the nGP imposes a Gaussian process prior for the function's mth-order derivative. The nesting comes in through including a local instantaneous mean function, which is drawn from another Gaussian process inducing adaptivity to locally-varying smoothness. We discuss the support of the nGP prior in terms of the closure of a reproducing kernel Hilbert space, and consider theoretical properties of the posterior. The posterior mean under the nGP prior is shown to be equivalent to the minimizer of a nested penalized sum-of-squares involving penalties for both the global and local roughness of the function. Using highly-efficient Markov chain Monte Carlo for posterior inference, the proposed method performs well in simulation studies compared to several alternatives, and is scalable to massive data, illustrated through a proteomics application.

Full Text

Duke Authors

Cited Authors

  • Zhu, B; Dunson, DB

Published Date

  • January 2013

Published In

Volume / Issue

  • 108 / 504

PubMed ID

  • 25328260

Pubmed Central ID

  • PMC4196220

Electronic International Standard Serial Number (EISSN)

  • 1537-274X

International Standard Serial Number (ISSN)

  • 0162-1459

Digital Object Identifier (DOI)

  • 10.1080/01621459.2013.838568


  • eng