Circuit and volume conductor models of transcutaneous electrical stimulation

Published

Conference Paper

Electrical stimulation of peripheral nerves is a widespread technique for the treatment of neurological diseases and disorders. However, peripheral stimulation typically requires surgical implantation of an electrode and a pulse generator. Transcutaneous stimulation with an external electrode and pulse generator could provide a noninvasive alternative for nerve stimulation. In this study we implemented a lumped parameter electrical circuit and a distributed parameter volume conductor model to quantify the distribution of potentials in the tissue, including frequency-dependent dielectric properties, during transcutaneous electrical stimulation with a very high frequency sinusoidal carrier and rectangular envelope pulse. The circuit model exhibited a highpass behavior with a corner frequency around 100 kHz, whereas the volume conductor model revealed maximum penetration of the potential for high frequency signals. Taken together, these results suggest that incorporating high frequency components in voltage-controlled transcutaneous stimulation may make it possible to reach deeper structures in the tissue, such as nerves. © 2013 IEEE.

Full Text

Duke Authors

Cited Authors

  • Medina, LE; Grill, WM

Published Date

  • December 1, 2013

Published In

Start / End Page

  • 1473 - 1476

Electronic International Standard Serial Number (EISSN)

  • 1948-3554

International Standard Serial Number (ISSN)

  • 1948-3546

International Standard Book Number 13 (ISBN-13)

  • 9781467319690

Digital Object Identifier (DOI)

  • 10.1109/NER.2013.6696223

Citation Source

  • Scopus