The effect of substrate topography on direct reprogramming of fibroblasts to induced neurons.


Journal Article

Cellular reprogramming holds tremendous potential for cell therapy and regenerative medicine. Recently, fibroblasts have been directly converted into induced neurons (iNs) by overexpression of the neuronal transcription factors Ascl1, Brn2 and Myt1L. Hypothesizing that cell-topography interactions could influence the fibroblast-to-neuron reprogramming process, we investigated the effects of various topographies on iNs produced by direct reprogramming. Final iN purity and conversion efficiency were increased on micrograting substrates. Neurite branching was increased on microposts and decreased on microgratings, with a simplified dendritic arbor characterized by the reduction of MAP2(+) neurites. Neurite outgrowth increased significantly on various topographies. DNA microarray analysis detected 20 differentially expressed genes in iNs reprogrammed on smooth versus microgratings, and quantitative PCR (qPCR) confirmed the upregulation of Vip and downregulation of Thy1 and Bmp5 on microgratings. Electrophysiology and calcium imaging verified the functionality of these iNs. This study demonstrates the potential of applying topographical cues to optimize cellular reprogramming.

Full Text

Cited Authors

  • Kulangara, K; Adler, AF; Wang, H; Chellappan, M; Hammett, E; Yasuda, R; Leong, KW

Published Date

  • July 2014

Published In

Volume / Issue

  • 35 / 20

Start / End Page

  • 5327 - 5336

PubMed ID

  • 24709523

Pubmed Central ID

  • 24709523

Electronic International Standard Serial Number (EISSN)

  • 1878-5905

International Standard Serial Number (ISSN)

  • 0142-9612

Digital Object Identifier (DOI)

  • 10.1016/j.biomaterials.2014.03.034


  • eng