Skip to main content
Journal cover image

Intercalated organic-inorganic perovskites stabilized by fluoroaryl-aryl interactions.

Publication ,  Journal Article
Mitzi, DB; Medeiros, DR; Malenfant, PRL
Published in: Inorganic chemistry
April 2002

Crystals of several new hybrid tin(II) iodide-based perovskites, involving 2,3,4,5,6- pentafluorophenethylammonium or phenethylammonium cation bilayers and intercalated aryl or perfluoroaryl molecules, were grown by slow evaporation of a methanol solution containing the hybrid perovskite and the intercalating species. The (C(6)F(5)C(2)H(4)NH(3))(2)SnI(4).(C(6)H(6)) structure was solved at -75 degrees C in a monoclinic C2/c subcell [a = 41.089(12) A, b = 6.134(2) A, c = 12.245(3) A, beta = 94.021(5) degrees, Z = 4] and consists of sheets of corner-sharing distorted SnI(6) octahedra separated by bilayers of pentafluorophenethylammonium cations. The intercalated benzene molecules form a single well-ordered layer interposed between adjacent fluoroaryl cation layers. The corresponding hybrid with an unfluorinated organic cation and fluorinated intercalating molecule, (C(6)H(5)C(2)H(4)NH(3))(2)SnI(4).(C(6)F(6)), is isostructural [a = 40.685(4) A, b = 6.0804(6) A, c = 12.163(1) A, beta = 93.136(2) degrees, Z = 4]. For each intercalated system, close C...C contacts (3.44-3.50 A) between the aromatic cation and the intercalated molecule are indicative of a significant face-to-face interaction, similar to that found in the complex C(6)H(6).C(6)F(6). Crystal growth runs with the organic cation and prospective intercalating molecule either both fluorinated or both unfluorinated did not yield stable intercalated compounds, demonstrating the significance of fluoroaryl-aryl interactions in the current intercalated structures. Thermal analysis of (C(6)F(5)C(2)H(4)NH(3))(2)SnI(4).(C(6)H(6)) and (C(6)H(5)C(2)H(4)NH(3))(2)SnI(4).(C(6)F(6)) crystals yields, in addition to the characteristic transitions of the parent perovskite, endothermic transitions [12.6(5) and 32.1(8) kJ/mol, respectively] with an onset at 145 degrees C and a weight loss corresponding to the complete loss of the intercalated molecule. The relatively high deintercalation temperature (well above the boiling point of benzene and hexafluorobenzene) demonstrates the usefulness of the hybrid perovskites in providing a stable framework for the examination of the fluoroaryl-aryl interaction, as well as the potential importance of this interaction in tailoring new hybrid perovskites. UV-vis absorption measurements on (C(6)H(5)C(2)H(4)NH(3))(2)SnI(4).(C(6)F(6)) thin films indicate a small reversible wavelength shift to higher energy for the tin(II) iodide framework exciton peak (with respect to that of the parent perovskite spectrum), from 608(2) nm [2.04 eV] to 595(2) nm [2.08 eV], and a corresponding shift in the band edge position. This spectral shift can most reasonably be attributed to subtle structural changes induced in the tin(II) iodide sheets by the intercalated hexafluorobenzene molecules.

Duke Scholars

Published In

Inorganic chemistry

DOI

EISSN

1520-510X

ISSN

0020-1669

Publication Date

April 2002

Volume

41

Issue

8

Start / End Page

2134 / 2145

Related Subject Headings

  • Inorganic & Nuclear Chemistry
  • 3403 Macromolecular and materials chemistry
  • 3402 Inorganic chemistry
  • 0399 Other Chemical Sciences
  • 0306 Physical Chemistry (incl. Structural)
  • 0302 Inorganic Chemistry
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Mitzi, D. B., Medeiros, D. R., & Malenfant, P. R. L. (2002). Intercalated organic-inorganic perovskites stabilized by fluoroaryl-aryl interactions. Inorganic Chemistry, 41(8), 2134–2145. https://doi.org/10.1021/ic011190x
Mitzi, David B., David R. Medeiros, and Patrick R. L. Malenfant. “Intercalated organic-inorganic perovskites stabilized by fluoroaryl-aryl interactions.Inorganic Chemistry 41, no. 8 (April 2002): 2134–45. https://doi.org/10.1021/ic011190x.
Mitzi DB, Medeiros DR, Malenfant PRL. Intercalated organic-inorganic perovskites stabilized by fluoroaryl-aryl interactions. Inorganic chemistry. 2002 Apr;41(8):2134–45.
Mitzi, David B., et al. “Intercalated organic-inorganic perovskites stabilized by fluoroaryl-aryl interactions.Inorganic Chemistry, vol. 41, no. 8, Apr. 2002, pp. 2134–45. Epmc, doi:10.1021/ic011190x.
Mitzi DB, Medeiros DR, Malenfant PRL. Intercalated organic-inorganic perovskites stabilized by fluoroaryl-aryl interactions. Inorganic chemistry. 2002 Apr;41(8):2134–2145.
Journal cover image

Published In

Inorganic chemistry

DOI

EISSN

1520-510X

ISSN

0020-1669

Publication Date

April 2002

Volume

41

Issue

8

Start / End Page

2134 / 2145

Related Subject Headings

  • Inorganic & Nuclear Chemistry
  • 3403 Macromolecular and materials chemistry
  • 3402 Inorganic chemistry
  • 0399 Other Chemical Sciences
  • 0306 Physical Chemistry (incl. Structural)
  • 0302 Inorganic Chemistry