Skip to main content
Journal cover image

Selection is no more efficient in haploid than in diploid life stages of an angiosperm and a moss.

Publication ,  Journal Article
Szövényi, P; Ricca, M; Hock, Z; Shaw, JA; Shimizu, KK; Wagner, A
Published in: Molecular biology and evolution
August 2013

The masking hypothesis predicts that selection is more efficient in haploids than in diploids, because dominant alleles can mask the deleterious effects of recessive alleles in diploids. However, gene expression breadth and noise can potentially counteract the effect of masking on the rate at which genes evolve. Land plants are ideal to ask whether masking, expression breadth, or expression noise dominate in their influence on the rate of molecular evolution, because they have a biphasic life cycle in which the duration and complexity of the haploid and diploid phase varies among organisms. Here, we generate and compile genome-wide gene expression, sequence divergence, and polymorphism data for Arabidopsis thaliana and for the moss Funaria hygrometrica to show that the evolutionary rates of haploid- and diploid-specific genes contradict the masking hypothesis. Haploid-specific genes do not evolve more slowly than diploid-specific genes in either organism. Our data suggest that gene expression breadth influence the evolutionary rate of phase-specific genes more strongly than masking. Our observations have implications for the role of haploid life stages in the purging of deleterious mutations, as well as for the evolution of ploidy.

Duke Scholars

Altmetric Attention Stats
Dimensions Citation Stats

Published In

Molecular biology and evolution

DOI

EISSN

1537-1719

ISSN

0737-4038

Publication Date

August 2013

Volume

30

Issue

8

Start / End Page

1929 / 1939

Related Subject Headings

  • Selection, Genetic
  • Polymorphism, Genetic
  • Male
  • Magnoliopsida
  • Life Cycle Stages
  • Haploidy
  • Female
  • Evolutionary Biology
  • Evolution, Molecular
  • Diploidy
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Szövényi, P., Ricca, M., Hock, Z., Shaw, J. A., Shimizu, K. K., & Wagner, A. (2013). Selection is no more efficient in haploid than in diploid life stages of an angiosperm and a moss. Molecular Biology and Evolution, 30(8), 1929–1939. https://doi.org/10.1093/molbev/mst095
Szövényi, Péter, Mariana Ricca, Zsófia Hock, Jonathan A. Shaw, Kentaro K. Shimizu, and Andreas Wagner. “Selection is no more efficient in haploid than in diploid life stages of an angiosperm and a moss.Molecular Biology and Evolution 30, no. 8 (August 2013): 1929–39. https://doi.org/10.1093/molbev/mst095.
Szövényi P, Ricca M, Hock Z, Shaw JA, Shimizu KK, Wagner A. Selection is no more efficient in haploid than in diploid life stages of an angiosperm and a moss. Molecular biology and evolution. 2013 Aug;30(8):1929–39.
Szövényi, Péter, et al. “Selection is no more efficient in haploid than in diploid life stages of an angiosperm and a moss.Molecular Biology and Evolution, vol. 30, no. 8, Aug. 2013, pp. 1929–39. Epmc, doi:10.1093/molbev/mst095.
Szövényi P, Ricca M, Hock Z, Shaw JA, Shimizu KK, Wagner A. Selection is no more efficient in haploid than in diploid life stages of an angiosperm and a moss. Molecular biology and evolution. 2013 Aug;30(8):1929–1939.
Journal cover image

Published In

Molecular biology and evolution

DOI

EISSN

1537-1719

ISSN

0737-4038

Publication Date

August 2013

Volume

30

Issue

8

Start / End Page

1929 / 1939

Related Subject Headings

  • Selection, Genetic
  • Polymorphism, Genetic
  • Male
  • Magnoliopsida
  • Life Cycle Stages
  • Haploidy
  • Female
  • Evolutionary Biology
  • Evolution, Molecular
  • Diploidy