Task-based strategy for optimized contrast enhanced breast imaging: Analysis of six imaging techniques for mammography and tomosynthesis


Journal Article

Purpose: The use of contrast agents in breast imaging has the capability of enhancing nodule detectability and providing physiological information. Accordingly, there has been a growing trend toward using iodine as a contrast medium in digital mammography (DM) and digital breast tomosynthesis (DBT). Widespread use raises concerns about the best way to use iodine in DM and DBT, and thus a comparison is necessary to evaluate typical iodine-enhanced imaging methods. This study used a task-based observer model to determine the optimal imaging approach by analyzing six imaging paradigms in terms of their ability to resolve iodine at a given dose: unsubtracted mammography and tomosynthesis, temporal subtraction mammography and tomosynthesis, and dual energy subtraction mammography and tomosynthesis. Methods: Imaging performance was characterized using a detectability index d, derived from the system task transfer function (TTF), an imaging task, iodine signal difference, and the noise power spectrum (NPS). The task modeled a 10 mm diameter lesion containing iodine concentrations between 2.1 mg/cc and 8.6 mg/cc. TTF was obtained using an edge phantom, and the NPS was measured over several exposure levels, energies, and target-filter combinations. Using a structured CIRS phantom, d was generated as a function of dose and iodine concentration. Results: For all iodine concentrations and dose, temporal subtraction techniques for mammography and tomosynthesis yielded the highest d, while dual energy techniques for both modalities demonstrated the next best performance. Unsubtracted imaging resulted in the lowest d values for both modalities, with unsubtracted mammography performing the worst out of all six paradigms. Conclusions: At any dose, temporal subtraction imaging provides the greatest detectability, with temporally subtracted DBT performing the highest. The authors attribute the successful performance to excellent cancellation of inplane structures and improved signal difference in the lesion. © 2014 American Association of Physicists in Medicine.

Full Text

Duke Authors

Cited Authors

  • Ikejimba, LC; Kiarashi, N; Ghate, SV; Samei, E; Lo, JY

Published Date

  • January 1, 2014

Published In

Volume / Issue

  • 41 / 6

International Standard Serial Number (ISSN)

  • 0094-2405

Digital Object Identifier (DOI)

  • 10.1118/1.4873317

Citation Source

  • Scopus