Quantitative analysis of three-dimensional biological cells using interferometric microscopy


Journal Article

Live biological cells are three-dimensional microscopic objects that constantly adjust their sizes, shapes and other biophysical features. Wide-field digital interferometry (WFDI) is a holographic technique that is able to record the complex wavefront of the light which has interacted with in-vitro cells in a single camera exposure, where no exogenous contrast agents are required. However, simple quasi-three-dimensional holographic visualization of the cell phase profiles need not be the end of the process. Quantitative analysis should permit extraction of numerical parameters which are useful for cytology or medical diagnosis. Using a transmission-mode setup, the phase profile represents the multiplication between the integral refractive index and the thickness of the sample. These coupled variables may not be distinct when acquiring the phase profiles of dynamic cells. Many morphological parameters which are useful for cell biologists are based on the cell thickness profile rather than on its phase profile. We first overview methods to decouple the cell thickness and its refractive index using the WFDI-based phase profile. Then, we present a whole-cell-imaging approach which is able to extract useful numerical parameters on the cells even in cases where decoupling of cell thickness and refractive index is not possible or desired. © 2011 SPIE.

Full Text

Duke Authors

Cited Authors

  • Shaked, NT; Wax, A

Published Date

  • January 1, 2011

Published In

Volume / Issue

  • 8043 /

Electronic International Standard Serial Number (EISSN)

  • 1996-756X

International Standard Serial Number (ISSN)

  • 0277-786X

Digital Object Identifier (DOI)

  • 10.1117/12.882357

Citation Source

  • Scopus