Compact model for carbon nanotube field-effect transistors including nonidealities and calibrated with experimental data down to 9-nm gate length

Published

Journal Article

A semianalytical carbon nanotube field-effect transistor (CNFET) model based on the virtual-source model is presented, which includes series resistance, parasitic capacitance, and direct source-to-drain tunneling leakage. The model is calibrated with recent experimental data down to 9-nm gate length. Device performance of 22-to 7-nm technology nodes is analyzed. The results suggest that contact resistance is the key performance limiter for CNFETs; direct source-to-drain tunneling results in significant leakage due to low effective mass in carbon nanotubes and prevents further downscaling of the gate length. The design space that minimizes the gate delay in CNFETs subject to OFF-state leakage current (IOFF) constraints is explored. Through the optimization of the length of the gate, contact, and extension regions to balance the parasitic effects, the gate delay can be improved by more than 10% at 11-and 7-nm technology nodes compared with the conventional 0.7× scaling rule, while the OFF-state leakage current remains below 0.5 μ Aμ m. © 1963-2012 IEEE.

Full Text

Duke Authors

Cited Authors

  • Luo, J; Wei, L; Lee, CS; Franklin, AD; Guan, X; Pop, E; Antoniadis, DA; Philip Wong, HS

Published Date

  • May 15, 2013

Published In

Volume / Issue

  • 60 / 6

Start / End Page

  • 1834 - 1843

International Standard Serial Number (ISSN)

  • 0018-9383

Digital Object Identifier (DOI)

  • 10.1109/TED.2013.2258023

Citation Source

  • Scopus