High-frequency graphene voltage amplifier

Published

Journal Article

While graphene transistors have proven capable of delivering gigahertz-range cutoff frequencies, applying the devices to RF circuits has been largely hindered by the lack of current saturation in the zero band gap graphene. Herein, the first high-frequency voltage amplifier is demonstrated using large-area chemical vapor deposition grown graphene. The graphene field-effect transistor (GFET) has a 6-finger gate design with gate length of 500 nm. The graphene common-source amplifier exhibits ∼5 dB low frequency gain with the 3 dB bandwidth greater than 6 GHz. This first AC voltage gain demonstration of a GFET is attributed to the clear current saturation in the device, which is enabled by an ultrathin gate dielectric (4 nm HfO2) of the embedded gate structures. The device also shows extrinsic transconductance of 1.2 mS/μm at 1 V drain bias, the highest for graphene FETs using large-scale graphene reported to date. © 2011 American Chemical Society.

Full Text

Duke Authors

Cited Authors

  • Han, SJ; Jenkins, KA; Valdes Garcia, A; Franklin, AD; Bol, AA; Haensch, W

Published Date

  • September 14, 2011

Published In

Volume / Issue

  • 11 / 9

Start / End Page

  • 3690 - 3693

Electronic International Standard Serial Number (EISSN)

  • 1530-6992

International Standard Serial Number (ISSN)

  • 1530-6984

Digital Object Identifier (DOI)

  • 10.1021/nl2016637

Citation Source

  • Scopus