Linear population allocation by bistable switches in response to transient stimulation.

Published

Journal Article

Many cellular decision processes, including proliferation, differentiation, and phenotypic switching, are controlled by bistable signaling networks. In response to transient or intermediate input signals, these networks allocate a population fraction to each of two distinct states (e.g. OFF and ON). While extensive studies have been carried out to analyze various bistable networks, they are primarily focused on responses of bistable networks to sustained input signals. In this work, we investigate the response characteristics of bistable networks to transient signals, using both theoretical analysis and numerical simulation. We find that bistable systems exhibit a common property: for input signals with short durations, the fraction of switching cells increases linearly with the signal duration, allowing the population to integrate transient signals to tune its response. We propose that this allocation algorithm can be an optimal response strategy for certain cellular decisions in which excessive switching results in lower population fitness.

Full Text

Duke Authors

Cited Authors

  • Srimani, JK; Yao, G; Neu, J; Tanouchi, Y; Lee, TJ; You, L

Published Date

  • January 2014

Published In

Volume / Issue

  • 9 / 8

Start / End Page

  • e105408 -

PubMed ID

  • 25141235

Pubmed Central ID

  • 25141235

Electronic International Standard Serial Number (EISSN)

  • 1932-6203

International Standard Serial Number (ISSN)

  • 1932-6203

Digital Object Identifier (DOI)

  • 10.1371/journal.pone.0105408

Language

  • eng