Increases in atmospheric CO2 have little influence on transpiration of a temperate forest canopy.

Published

Journal Article

Models of forest energy, water and carbon cycles assume decreased stomatal conductance with elevated atmospheric CO2 concentration ([CO2]) based on leaf-scale measurements, a response not directly translatable to canopies. Where canopy-atmosphere are well-coupled, [CO2 ]-induced structural changes, such as increasing leaf-area index (LD), may cause, or compensate for, reduced mean canopy stomatal conductance (GS), keeping transpiration (EC) and, hence, runoff unaltered. We investigated GS responses to increasing [CO2] of conifer and broadleaved trees in a temperate forest subjected to 17-yr free-air CO2 enrichment (FACE; + 200 μmol mol(-1)). During the final phase of the experiment, we employed step changes of [CO2] in four elevated-[CO2 ] plots, separating direct response to changing [CO2] in the leaf-internal air-space from indirect effects of slow changes via leaf hydraulic adjustments and canopy development. Short-term manipulations caused no direct response up to 1.8 × ambient [CO2], suggesting that the observed long-term 21% reduction of GS was an indirect effect of decreased leaf hydraulic conductance and increased leaf shading. Thus, EC was unaffected by [CO2] because 19% higher canopy LD nullified the effect of leaf hydraulic acclimation on GS . We advocate long-term experiments of duration sufficient for slow responses to manifest, and modifying models predicting forest water, energy and carbon cycles accordingly.

Full Text

Duke Authors

Cited Authors

  • Tor-ngern, P; Oren, R; Ward, EJ; Palmroth, S; McCarthy, HR; Domec, J-C

Published Date

  • January 2015

Published In

Volume / Issue

  • 205 / 2

Start / End Page

  • 518 - 525

PubMed ID

  • 25346045

Pubmed Central ID

  • 25346045

Electronic International Standard Serial Number (EISSN)

  • 1469-8137

International Standard Serial Number (ISSN)

  • 0028-646X

Digital Object Identifier (DOI)

  • 10.1111/nph.13148

Language

  • eng