Skip to main content
Journal cover image

Power and sample size calculations for the Wilcoxon-Mann-Whitney test in the presence of death-censored observations.

Publication ,  Journal Article
Matsouaka, RA; Betensky, RA
Published in: Stat Med
February 10, 2015

We consider a clinical trial of a potentially lethal disease in which patients are randomly assigned to two treatment groups and are followed for a fixed period of time; a continuous endpoint is measured at the end of follow-up. For some patients; however, death (or severe disease progression) may preclude measurement of the endpoint. A statistical analysis that includes only patients with endpoint measurements may be biased. An alternative analysis includes all randomized patients, with rank scores assigned to the patients who are available for the endpoint measurement on the basis of the magnitude of their responses and with 'worst-rank' scores assigned to those patients whose death precluded the measurement of the continuous endpoint. The worst-rank scores are worse than all observed rank scores. The treatment effect is then evaluated using the Wilcoxon-Mann-Whitney test. In this paper, we derive closed-form formulae for the power and sample size of the Wilcoxon-Mann-Whitney test when missing measurements of the continuous endpoints because of death are replaced by worst-rank scores. We distinguish two approaches for assigning the worst-rank scores. In the tied worst-rank approach, all deaths are weighted equally, and the worst-rank scores are set to a single value that is worse than all measured responses. In the untied worst-rank approach, the worst-rank scores further rank patients according to their time of death, so that an earlier death is considered worse than a later death, which in turn is worse than all measured responses. In addition, we propose four methods for the implementation of the sample size formulae for a trial with expected early death. We conduct Monte Carlo simulation studies to evaluate the accuracy of our power and sample size formulae and to compare the four sample size estimation methods.

Duke Scholars

Published In

Stat Med

DOI

EISSN

1097-0258

Publication Date

February 10, 2015

Volume

34

Issue

3

Start / End Page

406 / 431

Location

England

Related Subject Headings

  • Statistics, Nonparametric
  • Statistics & Probability
  • Sample Size
  • Randomized Controlled Trials as Topic
  • Mortality
  • Monte Carlo Method
  • Models, Statistical
  • Computer Simulation
  • Bias
  • 4905 Statistics
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Matsouaka, R. A., & Betensky, R. A. (2015). Power and sample size calculations for the Wilcoxon-Mann-Whitney test in the presence of death-censored observations. Stat Med, 34(3), 406–431. https://doi.org/10.1002/sim.6355
Matsouaka, Roland A., and Rebecca A. Betensky. “Power and sample size calculations for the Wilcoxon-Mann-Whitney test in the presence of death-censored observations.Stat Med 34, no. 3 (February 10, 2015): 406–31. https://doi.org/10.1002/sim.6355.
Matsouaka, Roland A., and Rebecca A. Betensky. “Power and sample size calculations for the Wilcoxon-Mann-Whitney test in the presence of death-censored observations.Stat Med, vol. 34, no. 3, Feb. 2015, pp. 406–31. Pubmed, doi:10.1002/sim.6355.
Journal cover image

Published In

Stat Med

DOI

EISSN

1097-0258

Publication Date

February 10, 2015

Volume

34

Issue

3

Start / End Page

406 / 431

Location

England

Related Subject Headings

  • Statistics, Nonparametric
  • Statistics & Probability
  • Sample Size
  • Randomized Controlled Trials as Topic
  • Mortality
  • Monte Carlo Method
  • Models, Statistical
  • Computer Simulation
  • Bias
  • 4905 Statistics