Medial premotor cortex shows a reduction in inhibitory markers and mediates recovery in a mouse model of focal stroke.

Published

Journal Article

BACKGROUND AND PURPOSE: Motor recovery after ischemic stroke in primary motor cortex is thought to occur in part through training-enhanced reorganization in undamaged premotor areas, enabled by reductions in cortical inhibition. Here we used a mouse model of focal cortical stroke and a double-lesion approach to test the idea that a medial premotor area (medial agranular cortex [AGm]) reorganizes to mediate recovery of prehension, and that this reorganization is associated with a reduction in inhibitory interneuron markers. METHODS: C57Bl/6 mice were trained to perform a skilled prehension task to an asymptotic level of performance after which they underwent photocoagulation-induced stroke in the caudal forelimb area. The mice were then retrained and inhibitory interneuron immunofluorescence was assessed in prechosen, anatomically defined neocortical areas. Mice then underwent a second photocoagulation-induced stroke in AGm. RESULTS: Focal caudal forelimb area stroke led to a decrement in skilled prehension. Training-associated recovery of prehension was associated with a reduction in parvalbumin, calretinin, and calbindin expression in AGm. Subsequent infarction of AGm led to reinstatement of the original deficit. CONCLUSIONS: We conclude that with training, AGm can reorganize after a focal motor stroke and serve as a new control area for prehension. Reduced inhibition may represent a marker for reorganization or it is necessary for reorganization to occur. Our mouse model, with all of the attendant genetic benefits, may allow us to determine at the cellular and molecular levels how behavioral training and endogenous plasticity interact to mediate recovery.

Full Text

Duke Authors

Cited Authors

  • Zeiler, SR; Gibson, EM; Hoesch, RE; Li, MY; Worley, PF; O'Brien, RJ; Krakauer, JW

Published Date

  • February 2013

Published In

Volume / Issue

  • 44 / 2

Start / End Page

  • 483 - 489

PubMed ID

  • 23321442

Pubmed Central ID

  • 23321442

Electronic International Standard Serial Number (EISSN)

  • 1524-4628

Digital Object Identifier (DOI)

  • 10.1161/STROKEAHA.112.676940

Language

  • eng

Conference Location

  • United States