Narp and NP1 form heterocomplexes that function in developmental and activity-dependent synaptic plasticity.

Published

Journal Article

Narp is a neuronal immediate early gene that plays a role in excitatory synaptogenesis. Here, we report that native Narp in brain is part of a pentraxin complex that includes NP1. These proteins are covalently linked by disulfide bonds into highly organized complexes, and their relative ratio in the complex is dynamically dependent upon the neuron's activity history and developmental stage. Complex formation is dependent on their distinct N-terminal coiled-coil domains, while their closely homologous C-terminal pentraxin domains mediate association with AMPA-type glutamate receptors. Narp is substantially more effective in assays of cell surface cluster formation, coclustering of AMPA receptors, and excitatory synaptogenesis, yet their combined expression results in supraadditive effects. These studies support a model in which Narp can regulate the latent synaptogenic activity of NP1 by forming mixed pentraxin assemblies. This mechanism appears to contribute to both activity-independent and activity-dependent excitatory synaptogenesis.

Full Text

Duke Authors

Cited Authors

  • Xu, D; Hopf, C; Reddy, R; Cho, RW; Guo, L; Lanahan, A; Petralia, RS; Wenthold, RJ; O'Brien, RJ; Worley, P

Published Date

  • July 31, 2003

Published In

Volume / Issue

  • 39 / 3

Start / End Page

  • 513 - 528

PubMed ID

  • 12895424

Pubmed Central ID

  • 12895424

International Standard Serial Number (ISSN)

  • 0896-6273

Digital Object Identifier (DOI)

  • 10.1016/s0896-6273(03)00463-x

Language

  • eng

Conference Location

  • United States