Skip to main content

The PDZ motif of the α1C subunit is not required for surface trafficking and adrenergic modulation of CaV1.2 channel in the heart.

Publication ,  Journal Article
Yang, L; Katchman, A; Weinberg, RL; Abrams, J; Samad, T; Wan, E; Pitt, GS; Marx, SO
Published in: J Biol Chem
January 23, 2015

Voltage-gated Ca(2+) channels play a key role in initiating muscle excitation-contraction coupling, neurotransmitter release, gene expression, and hormone secretion. The association of CaV1.2 with a supramolecular complex impacts trafficking, localization, turnover, and, most importantly, multifaceted regulation of its function in the heart. Several studies hint at an important role for the C terminus of the α1C subunit as a hub for multidimensional regulation of CaV1.2 channel trafficking and function. Recent studies have demonstrated an important role for the four-residue PDZ binding motif at the C terminus of α1C in interacting with scaffold proteins containing PDZ domains, in the subcellular localization of CaV1.2 in neurons, and in the efficient signaling to cAMP-response element-binding protein in neurons. However, the role of the α1C PDZ ligand domain in the heart is not known. To determine whether the α1C PDZ motif is critical for CaV1.2 trafficking and function in cardiomyocytes, we generated transgenic mice with inducible expression of an N-terminal FLAG epitope-tagged dihydropyridine-resistant α1C with the PDZ motif deleted (ΔPDZ). These mice were crossed with α-myosin heavy chain reverse transcriptional transactivator transgenic mice, and the double-transgenic mice were fed doxycycline. The ΔPDZ channels expressed, trafficked to the membrane, and supported robust excitation-contraction coupling in the presence of nisoldipine, a dihydropyridine Ca(2+) channel blocker, providing functional evidence that they appropriately target to dyads. The ΔPDZ Ca(2+) channels were appropriately regulated by isoproterenol and forskolin. These data indicate that the α1C PDZ motif is not required for surface trafficking, localization to the dyad, or adrenergic stimulation of CaV1.2 in adult cardiomyocytes.

Duke Scholars

Published In

J Biol Chem

DOI

EISSN

1083-351X

Publication Date

January 23, 2015

Volume

290

Issue

4

Start / End Page

2166 / 2174

Location

United States

Related Subject Headings

  • Surface Properties
  • Rabbits
  • Protein Structure, Tertiary
  • Nisoldipine
  • Neurons
  • Myocytes, Cardiac
  • Myocardium
  • Mice, Transgenic
  • Mice
  • Ligands
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Yang, L., Katchman, A., Weinberg, R. L., Abrams, J., Samad, T., Wan, E., … Marx, S. O. (2015). The PDZ motif of the α1C subunit is not required for surface trafficking and adrenergic modulation of CaV1.2 channel in the heart. J Biol Chem, 290(4), 2166–2174. https://doi.org/10.1074/jbc.M114.602508
Yang, Lin, Alexander Katchman, Richard L. Weinberg, Jeffrey Abrams, Tahmina Samad, Elaine Wan, Geoffrey S. Pitt, and Steven O. Marx. “The PDZ motif of the α1C subunit is not required for surface trafficking and adrenergic modulation of CaV1.2 channel in the heart.J Biol Chem 290, no. 4 (January 23, 2015): 2166–74. https://doi.org/10.1074/jbc.M114.602508.
Yang L, Katchman A, Weinberg RL, Abrams J, Samad T, Wan E, et al. The PDZ motif of the α1C subunit is not required for surface trafficking and adrenergic modulation of CaV1.2 channel in the heart. J Biol Chem. 2015 Jan 23;290(4):2166–74.
Yang, Lin, et al. “The PDZ motif of the α1C subunit is not required for surface trafficking and adrenergic modulation of CaV1.2 channel in the heart.J Biol Chem, vol. 290, no. 4, Jan. 2015, pp. 2166–74. Pubmed, doi:10.1074/jbc.M114.602508.
Yang L, Katchman A, Weinberg RL, Abrams J, Samad T, Wan E, Pitt GS, Marx SO. The PDZ motif of the α1C subunit is not required for surface trafficking and adrenergic modulation of CaV1.2 channel in the heart. J Biol Chem. 2015 Jan 23;290(4):2166–2174.

Published In

J Biol Chem

DOI

EISSN

1083-351X

Publication Date

January 23, 2015

Volume

290

Issue

4

Start / End Page

2166 / 2174

Location

United States

Related Subject Headings

  • Surface Properties
  • Rabbits
  • Protein Structure, Tertiary
  • Nisoldipine
  • Neurons
  • Myocytes, Cardiac
  • Myocardium
  • Mice, Transgenic
  • Mice
  • Ligands