Immunity to MHC class I antigen after direct DNA transfer into skeletal muscle.

Journal Article (Journal Article)

Plasmid cDNA encoding the alpha-chain of either membrane-bound (pcRT.45) or secreted (pcRQ.B3) RT1Aa MHC class I Ag were transferred to Lewis (RT1(1)) rat skeletal muscle by direct injection. Rats were challenged 7 days later with an ACI (RT1a) heterotropic heart transplant, and cardiac allograft survival, RT1Aa-specific antibody levels, and frequency of ACI-specific CTL were monitored. Graft rejection was accelerated by > or = 2 days in an Ag-specific and dose-dependent manner in pcRT.45-injected rats. The pcRQ.B3-injected rats also rejected grafts more rapidly; however, graft rejection was accelerated by only 1 day, and graft infiltrates were less pronounced than in pcRT.45-injected rats. Injection of pcRT.45 resulted in an increase in ACI-specific CTL precursor frequency 3 days post-transplant, whereas there was no significant change in rats pretreated with pcRQ.B3 injection. Compared with rats injected with a control plasmid encoding firefly luciferase, transfer of pcRT.45 resulted in an increase in RT1Aa-specific IgG and IgM antibody 3 days after heart transplantation. Transfer of pcRQ.B3 resulted in a similar mean increase in RT1Aa-specific IgG and IgM antibody after transplantation, but the variability from rat to rat was greater, with some animals exhibiting strong priming, and others showing little or no priming by gene injection. Our results suggest that skeletal muscle can express either membrane-bound or secreted MHC class I Ag after gene transfer, but that the membrane-bound form is more immunogenic than the secreted form in the high responder Lewis rat. Direct DNA transfer to skeletal muscle provides a rapid and specific approach to studying immunity to allogeneic MHC Ag.

Full Text

Duke Authors

Cited Authors

  • Geissler, EK; Wang, J; Fechner, JH; Burlingham, WJ; Knechtle, SJ

Published Date

  • January 15, 1994

Published In

Volume / Issue

  • 152 / 2

Start / End Page

  • 413 - 421

PubMed ID

  • 8283029

International Standard Serial Number (ISSN)

  • 0022-1767

Language

  • eng

Conference Location

  • United States