Low-molecular-weight carbon nitrides for solar hydrogen evolution.

Journal Article

This work focuses on the control of the polymerization process for melon ("graphitic carbon nitride"), with the aim of improving its photocatalytic activity intrinsically. We demonstrate here that reduction of the synthesis temperature leads to a mixture of the monomer melem and its higher condensates. We show that this mixture can be separated and provide evidence that the higher condensates are isolated oligomers of melem. On evaluating their photocatalytic activity for hydrogen evolution, the oligomers were found to be the most active species, having up to twice the activity of the monomer/oligomer mixture of the as-synthesized material, which in turn has 3 times the activity of the polymer melon, the literature benchmark. These results highlight the role of "defects", i.e., chain terminations, in increasing the catalytic activity of carbon nitrides and at the same time point to the ample potential of intrinsically improving the photocatalytic activity of "carbon nitride", especially through the selective synthesis of the active phase.

Full Text

Duke Authors

Cited Authors

  • Lau, VW-H; Mesch, MB; Duppel, V; Blum, V; Senker, J; Lotsch, BV

Published Date

  • January 13, 2015

Published In

Volume / Issue

  • 137 / 3

Start / End Page

  • 1064 - 1072

PubMed ID

  • 25537611

Electronic International Standard Serial Number (EISSN)

  • 1520-5126

International Standard Serial Number (ISSN)

  • 0002-7863

Digital Object Identifier (DOI)

  • 10.1021/ja511802c

Language

  • eng