A novel method of estimating effective dose from the point dose method: a case study--parathyroid CT scans.

Published

Journal Article

The purpose of this study was to validate a novel approach of applying a partial volume correction factor (PVCF) using a limited number of MOSFET detectors in the effective dose (E) calculation. The results of the proposed PVCF method were compared to the results from both the point dose (PD) method and a commercial CT dose estimation software (CT-Expo). To measure organ doses, an adult female anthropomorphic phantom was loaded with 20 MOSFET detectors and was scanned using the non-contrast and 2 phase contrast-enhanced parathyroid imaging protocols on a 64-slice multi-detector computed tomography scanner. E was computed by three methods: the PD method, the PVCF method, and the CT-Expo method. The E (in mSv) for the PD method, the PVCF method, and CT-Expo method was 2.6  ±  0.2, 1.3  ±  0.1, and 1.1 for the non-contrast scan, 21.9  ±  0.4, 13.9  ±  0.2, and 14.6 for the 1st phase of the contrast-enhanced scan, and 15.5  ±  0.3, 9.8  ±  0.1, and 10.4 for the 2nd phase of the contrast-enhanced scan, respectively. The E with the PD method differed from the PVCF method by 66.7% for the non-contrast scan, by 44.9% and by 45.5% respectively for the 1st and 2nd phases of the contrast-enhanced scan. The E with PVCF was comparable to the results from the CT-Expo method with percent differences of 15.8%, 5.0%, and 6.3% for the non-contrast scan and the 1st and 2nd phases of the contrast-enhanced scan, respectively. To conclude, the PVCF method estimated E within 16% difference as compared to 50-70% in the PD method. In addition, the results demonstrate that E can be estimated accurately from a limited number of detectors.

Full Text

Duke Authors

Cited Authors

  • Januzis, N; Nguyen, G; Hoang, JK; Lowry, C; Yoshizumi, TT

Published Date

  • March 7, 2015

Published In

Volume / Issue

  • 60 / 5

Start / End Page

  • 1763 - 1773

PubMed ID

  • 25658032

Pubmed Central ID

  • 25658032

Electronic International Standard Serial Number (EISSN)

  • 1361-6560

Digital Object Identifier (DOI)

  • 10.1088/0031-9155/60/5/1763

Language

  • eng

Conference Location

  • England