Direct measurement of the boron isotope fractionation factor: Reducing the uncertainty in reconstructing ocean paleo-pH

Journal Article (Journal Article)

The boron isotopic composition of calcium carbonate skeletons is a promising proxy method for reconstructing paleo-ocean pH and atmospheric CO2 from the geological record. Although the boron isotope methodology has been used extensively over the past two decades to determine ancient ocean-pH, the actual value of the boron isotope fractionation factor (εB) between the two main dissolved boron species, 11B(OH)3 and 10B(OH)-4, has remained uncertain. Initially, εB values were theoretically computed from vibrational frequencies of boron species, resulting in a value of ~19‰. Later, spectrophotometric pH measurements on artificial seawater suggested a higher value of ~27‰. A few independent theoretical models also pointed to a higher εB value. Here we provide, for the first time, an independent empirical fractionation factor (εB=26.0±1.0‰25 °C), determined by direct measurements of B(OH)3 in seawater and other solutions. Boric acid was isolated by preferential passage through a reverse osmosis membrane under controlled pH conditions. We further demonstrate that applying the Pitzer ion-interaction approach, combined with ion-pairing calculations, results in a more accurate determination of species distribution in aquatic solutions of different chemical composition, relative to the traditional two-species boron-system approach. We show that using the revised approach reduces both the error in simulating ancient atmospheric CO2 (by up to 21%) and the overall uncertainty of applying boron isotopes for paleo-pH reconstruction. Combined, this revised methodology lays the foundation for a more accurate determination of ocean paleo-pH through time.

Full Text

Duke Authors

Cited Authors

  • Nir, O; Vengosh, A; Harkness, JS; Dwyer, GS; Lahav, O

Published Date

  • March 5, 2015

Published In

Volume / Issue

  • 414 /

Start / End Page

  • 1 - 5

International Standard Serial Number (ISSN)

  • 0012-821X

Digital Object Identifier (DOI)

  • 10.1016/j.epsl.2015.01.006

Citation Source

  • Scopus