Centromeric barrier disruption leads to mitotic defects in Schizosaccharomyces pombe

Journal Article

Centromeres are cis-acting chromosomal domains that direct kinetochore formation, enabling faithful chromosome segregation and preserving genome stability. The centromeres of most eukaryotic organisms are structurally complex, composed of nonoverlapping, structurally and functionally distinct chromatin subdomains, including the specialized core chromatin that underlies the kinetochore and pericentromeric heterochromatin. The genomic and epigenetic features that specify and preserve the adjacent chromatin subdomains critical to centromere identity are currently unknown. Here we demonstrate that chromatin barriers regulate this process in Schizosaccharomyces pombe. Reduced fitness and mitotic chromosome segregation defects occur in strains that carry exogenous DNA inserted at centromere 1 chromatin barriers. Abnormal phenotypes are accompanied by changes in the structural integrity of both the centromeric core chromatin domain, containing the conserved CENP-A(Cnp1) protein, and the flanking pericentric heterochromatin domain. Barrier mutant cells can revert to wild-type growth and centromere structure at a high frequency after the spontaneous excision of integrated exogenous DNA. Our results reveal a previously undemonstrated role for chromatin barriers in chromosome segregation and in the prevention of genome instability.

Full Text

Duke Authors

Cited Authors

  • Gaither, TL; Merrett, SL; Pun, MJ; Scott, KC

Published Date

  • April 1, 2014

Published In

Volume / Issue

  • 4 / 4

Start / End Page

  • 633 - 642

Electronic International Standard Serial Number (EISSN)

  • 2160-1836

Digital Object Identifier (DOI)

  • 10.1534/g3.114.010397

Citation Source

  • Scopus