Stability and in vivo behavior of Rh[16aneS4-diol]211 at complex: a potential precursor for astatine radiopharmaceuticals.

Published

Journal Article

INTRODUCTION: The heavy halogen (211)At is of great interest for targeted radiotherapy because it decays by the emission of short-range, high-energy α-particles. However, many astatine compounds that have been synthesized are unstable in vivo, providing motivation for seeking other (211)At labeling strategies. One relatively unexplored approach is to utilize prosthetic groups based on astatinated rhodium (III) complex stabilized with a tetrathioether macrocyclic ligand - Rh[16aneS(4)-diol](211)At. The purpose of the current study was to evaluate the in vitro and in vivo stability of this complex in comparison to its iodine analog - Rh[16aneS(4)-diol](131)I. METHODS: Rh[16aneS(4)-diol](211)At and Rh[16aneS(4)-diol](131)I complexes were synthesized and purified by HPLC. The stability of both complexes was evaluated in vitro by incubation in phosphate-buffered saline (PBS) and human serum at different temperatures. The in vivo behavior of the two radiohalogenated complexes was assessed by a paired-label biodistribution study in normal Balb/c mice. RESULTS: Both complexes were synthesized in high yield and purity. Almost no degradation was observed for Rh[16aneS(4)-diol](131)I in PBS over a 72 h incubation. The astatinated analog exhibited good stability in PBS over 14 h. A slow decline in the percentage of intact complex was observed for both tracers in human serum. In the biodistribution study, retention of (211)At in most tissues was higher than that of (131)I at all time points, especially in spleen and lungs. Renal clearance of Rh[16aneS(4)-diol](211)At and Rh[16aneS(4)-diol](131)I predominated, with 84.1 ± 2.3% and 94.6 ± 0.9% of injected dose excreted via the urine at 4 h. CONCLUSIONS: The Rh[16aneS(4)-diol](211)At complex might be useful for constructing prosthetic groups for the astatination of biomolecules and further studies are planned to evaluate this possibility.

Full Text

Duke Authors

Cited Authors

  • Pruszyński, M; Łyczko, M; Bilewicz, A; Zalutsky, MR

Published Date

  • May 2015

Published In

Volume / Issue

  • 42 / 5

Start / End Page

  • 439 - 445

PubMed ID

  • 25687450

Pubmed Central ID

  • 25687450

Electronic International Standard Serial Number (EISSN)

  • 1872-9614

Digital Object Identifier (DOI)

  • 10.1016/j.nucmedbio.2014.12.011

Language

  • eng

Conference Location

  • United States