Mechanical sensitivity reveals evolutionary dynamics of mechanical systems.

Journal Article (Journal Article)

A classic question in evolutionary biology is how form-function relationships promote or limit diversification. Mechanical metrics, such as kinematic transmission (KT) in linkage systems, are useful tools for examining the evolution of form and function in a comparative context. The convergence of disparate systems on equivalent metric values (mechanical equivalence) has been highlighted as a source of potential morphological diversity under the assumption that morphology can evolve with minimal impact on function. However, this assumption does not account for mechanical sensitivity-the sensitivity of the metric to morphological changes in individual components of a structure. We examined the diversification of a four-bar linkage system in mantis shrimp (Stomatopoda), and found evidence for both mechanical equivalence and differential mechanical sensitivity. KT exhibited variable correlations with individual linkage components, highlighting the components that influence KT evolution, and the components that are free to evolve independently from KT and thereby contribute to the observed pattern of mechanical equivalence. Determining the mechanical sensitivity in a system leads to a deeper understanding of both functional convergence and morphological diversification. This study illustrates the importance of multi-level analyses in delineating the factors that limit and promote diversification in form-function systems.

Full Text

Duke Authors

Cited Authors

  • Anderson, PSL; Patek, SN

Published Date

  • April 2015

Published In

Volume / Issue

  • 282 / 1804

Start / End Page

  • 20143088 -

PubMed ID

  • 25716791

Pubmed Central ID

  • PMC4375878

Electronic International Standard Serial Number (EISSN)

  • 1471-2954

International Standard Serial Number (ISSN)

  • 0962-8452

Digital Object Identifier (DOI)

  • 10.1098/rspb.2014.3088


  • eng