Differential roles of Aβ processing in hypoxia-induced axonal damage.

Published

Journal Article

Axonopathy is a common and early phase in neurodegenerative and traumatic CNS diseases. Recent work suggests that amyloid β (Aβ) produced from amyloid precursor protein (APP) may be a critical downstream mediator of CNS axonopathy in CNS diseases, particularly those associated with hypoxia. We critically tested this hypothesis in an adult retinal explant system that preserves the three-dimensional organization of the retina while permitting direct imaging of two cardinal features of early-stage axonopathy: axonal structural integrity and axonal transport capacity. Using this system, we found via pharmacological inhibition and genetic deletion of APP that production of Aβ is a necessary step in structural compromise of retinal ganglion cell (RGC) axons induced by the disease-relevant stressor hypoxia. However, identical blockade of Aβ production was not sufficient to protect axons from associated hypoxia-induced reduction in axonal transport. Thus, Aβ mediates distinct facets of hypoxia-induced axonopathy and may represent a functionally selective pharmacological target for therapies directed against early-stage axonopathy in CNS diseases.

Full Text

Cited Authors

  • Christianson, MG; Lo, DC

Published Date

  • May 2015

Published In

Volume / Issue

  • 77 /

Start / End Page

  • 94 - 105

PubMed ID

  • 25771168

Pubmed Central ID

  • 25771168

Electronic International Standard Serial Number (EISSN)

  • 1095-953X

International Standard Serial Number (ISSN)

  • 0969-9961

Digital Object Identifier (DOI)

  • 10.1016/j.nbd.2015.02.027

Language

  • eng