Sex-specific effects of cigarette mentholation on brain nicotine accumulation and smoking behavior

Published

Journal Article

© 2015 American College of Neuropsychopharmacology. All rights reserved. Menthol cigarettes are likely associated with greater risks of smoking dependence than non-menthol cigarettes. We sought to test the hypothesis that menthol increases the rate of brain nicotine accumulation (BNA) during smoking and thereby enhances its addictive effects. In a counter-balanced cross-over design, 10 menthol and 9 non-menthol smokers (10 females and 9 males; mean age 44.3) underwent two study phases. In each phase, the participant smoked exclusively either menthol or non-menthol research cigarettes for approximately 1 week prior to a positron emission tomography (PET) scan session, during which the subject's head was scanned following inhalation of a single puff of smoke from a cigarette containing 11 C-nicotine. No differences in initial slope, Cmax, area under curve (AUC), and T1/2 of BNA were found between menthol and non-menthol cigarettes across all subjects; however, menthol relative to non-menthol cigarettes were associated with steeper initial slopes in men (p=0.008). Unexpectedly, women had faster BNA as indicated by greater values of the initial slope, Cmax, AUC, and shorter T1/2 than men (all ps<0.04). The rates of BNA were significantly correlated with ratings of smoking motivations of getting a 'rush', getting relaxing effects and marginally with alleviation of craving. These results do not provide strong support for the putative role of menthol in enhancing BNA, although further studies should explore the apparent effect of menthol on BNA in men. Fast BNA during smoking and preference of sensory properties of menthol cigarettes may independently or jointly contribute to smoking dependence among women.

Full Text

Duke Authors

Cited Authors

  • Zuo, Y; Mukhin, AG; Garg, S; Nazih, R; Behm, FM; Garg, PK; Rose, JE

Published Date

  • January 1, 2015

Published In

Volume / Issue

  • 40 / 4

Start / End Page

  • 884 - 892

Electronic International Standard Serial Number (EISSN)

  • 1740-634X

International Standard Serial Number (ISSN)

  • 0893-133X

Digital Object Identifier (DOI)

  • 10.1038/npp.2014.263

Citation Source

  • Scopus