Morphology, anatomy, and classification of the bryophyta

Book Section

© Cambridge University Press 2000, 2009. With approximately 13 000 species, the Bryophyta compose the second most diverse phylum of land plants. Mosses share with the Marchantiophyta and Anthocerotophyta a haplodiplobiontic life cycle that marks the shift from the haploid-dominated life cycle of the algal ancestors of embryophytes to the sporophyte-dominated life cycle of vascular plants. The gametophyte is free-living, autotrophic, and almost always composed of a leafy stem. Following fertilization a sporophyte develops into an unbranched axis bearing a terminal spore-bearing capsule. The sporophyte remains physically attached to the gametophyte and is at least partially physiologically dependent on the maternal plant. Recent phylogenetic reconstructions suggest that three lineages of early land plants compose an evolutionary grade that spans the transition to land and the origin of plants with branched sporophytes (see Chapter 4). The Bryophyta seem to occupy an intermediate position: their origin predates the divergence of the ancestor to the hornworts and vascular plants but evolved from a common ancestor with liverworts (Qiu et al. 2006). The origin of the earliest land plants can be traced back to the Ordovician and maybe the Cambrian (Strother et al. 2004). Although unambiguous fossils of mosses have only been recovered from sediments dating from younger geological periods (Upper Carboniferous), divergence time estimates based on molecular phylogenies suggest that the origin of mosses dates back to the Ordovician (Newton et al. 2007) and thus that their unique evolutionary history spans at least 400 million years.

Full Text

Duke Authors

Cited Authors

  • Goffinet, B; Buck, WR; Shaw, AJ

Published Date

  • January 1, 2008

Book Title

  • Bryophyte Biology, Second Edition

Start / End Page

  • 55 - 138

International Standard Book Number 13 (ISBN-13)

  • 9780511754807

Digital Object Identifier (DOI)

  • 10.1017/CBO9780511754807.003

Citation Source

  • Scopus