Reformulation of DFT + U as a pseudohybrid hubbard density functional for accelerated materials discovery

Published

Journal Article

The accurate prediction of the electronic properties of materials at a low computational expense is a necessary condition for the development of effective high-throughput quantum-mechanics (HTQM) frameworks for accelerated materials discovery. HTQM infrastructures rely on the predictive capability of density functional theory (DFT), the method of choice for the first-principles study of materials properties. However, DFT suffers from approximations that result in a somewhat inaccurate description of the electronic band structure of semiconductors and insulators. In this article, we introduce ACBN0, a pseudohybrid Hubbard density functional that yields an improved prediction of the band structure of insulators such as transition-metal oxides, as shown for TiO2, MnO, NiO, and ZnO, with only a negligible increase in computational cost.

Full Text

Duke Authors

Cited Authors

  • Agapito, LA; Curtarolo, S; Nardelli, MB

Published Date

  • January 1, 2015

Published In

Volume / Issue

  • 5 / 1

Electronic International Standard Serial Number (EISSN)

  • 2160-3308

Digital Object Identifier (DOI)

  • 10.1103/PhysRevX.5.011006

Citation Source

  • Scopus