Integrating chemical mutagenesis and whole-genome sequencing as a platform for forward and reverse genetic analysis of Chlamydia.

Journal Article (Journal Article)

Gene inactivation by transposon insertion or allelic exchange is a powerful approach to probe gene function. Unfortunately, many microbes, including Chlamydia, are not amenable to routine molecular genetic manipulations. Here we describe an arrayed library of chemically induced mutants of the genetically intransigent pathogen Chlamydia trachomatis, in which all mutations have been identified by whole-genome sequencing, providing a platform for reverse genetic applications. An analysis of possible loss-of-function mutations in the collection uncovered plasticity in the central metabolic properties of this obligate intracellular pathogen. We also describe the use of the library in a forward genetic screen that identified InaC as a bacterial factor that binds host ARF and 14-3-3 proteins and modulates F-actin assembly and Golgi redistribution around the pathogenic vacuole. This work provides a robust platform for reverse and forward genetic approaches in Chlamydia and should serve as a valuable resource to the community.

Full Text

Duke Authors

Cited Authors

  • Kokes, M; Dunn, JD; Granek, JA; Nguyen, BD; Barker, JR; Valdivia, RH; Bastidas, RJ

Published Date

  • May 13, 2015

Published In

Volume / Issue

  • 17 / 5

Start / End Page

  • 716 - 725

PubMed ID

  • 25920978

Pubmed Central ID

  • PMC4418230

Electronic International Standard Serial Number (EISSN)

  • 1934-6069

Digital Object Identifier (DOI)

  • 10.1016/j.chom.2015.03.014


  • eng

Conference Location

  • United States