Skip to main content

Rapid and Efficient Generation of Transgene-Free iPSC from a Small Volume of Cryopreserved Blood.

Publication ,  Journal Article
Zhou, H; Martinez, H; Sun, B; Li, A; Zimmer, M; Katsanis, N; Davis, EE; Kurtzberg, J; Lipnick, S; Noggle, S; Rao, M; Chang, S
Published in: Stem Cell Rev Rep
August 2015

Human peripheral blood and umbilical cord blood represent attractive sources of cells for reprogramming to induced pluripotent stem cells (iPSCs). However, to date, most of the blood-derived iPSCs were generated using either integrating methods or starting from T-lymphocytes that have genomic rearrangements thus bearing uncertain consequences when using iPSC-derived lineages for disease modeling and cell therapies. Recently, both peripheral blood and cord blood cells have been reprogrammed into transgene-free iPSC using the Sendai viral vector. Here we demonstrate that peripheral blood can be utilized for medium-throughput iPSC production without the need to maintain cell culture prior to reprogramming induction. Cell reprogramming can also be accomplished with as little as 3000 previously cryopreserved cord blood cells under feeder-free and chemically defined Xeno-free conditions that are compliant with standard Good Manufacturing Practice (GMP) regulations. The first iPSC colonies appear 2-3 weeks faster in comparison to previous reports. Notably, these peripheral blood- and cord blood-derived iPSCs are free of detectable immunoglobulin heavy chain (IGH) and T cell receptor (TCR) gene rearrangements, suggesting they did not originate from B- or T- lymphoid cells. The iPSCs are pluripotent as evaluated by the scorecard assay and in vitro multi lineage functional cell differentiation. Our data show that small volumes of cryopreserved peripheral blood or cord blood cells can be reprogrammed efficiently at a convenient, cost effective and scalable way. In summary, our method expands the reprogramming potential of limited or archived samples either stored at blood banks or obtained from pediatric populations that cannot easily provide large quantities of peripheral blood or a skin biopsy.

Duke Scholars

Altmetric Attention Stats
Dimensions Citation Stats

Published In

Stem Cell Rev Rep

DOI

EISSN

2629-3277

Publication Date

August 2015

Volume

11

Issue

4

Start / End Page

652 / 665

Location

United States

Related Subject Headings

  • Transgenes
  • Sendai virus
  • SOXB1 Transcription Factors
  • Receptors, Transferrin
  • Proto-Oncogene Proteins c-myc
  • Pluripotent Stem Cells
  • Octamer Transcription Factor-3
  • Leukocytes, Mononuclear
  • Kruppel-Like Transcription Factors
  • Kruppel-Like Factor 4
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Zhou, H., Martinez, H., Sun, B., Li, A., Zimmer, M., Katsanis, N., … Chang, S. (2015). Rapid and Efficient Generation of Transgene-Free iPSC from a Small Volume of Cryopreserved Blood. Stem Cell Rev Rep, 11(4), 652–665. https://doi.org/10.1007/s12015-015-9586-8
Zhou, Hongyan, Hector Martinez, Bruce Sun, Aiqun Li, Matthew Zimmer, Nicholas Katsanis, Erica E. Davis, et al. “Rapid and Efficient Generation of Transgene-Free iPSC from a Small Volume of Cryopreserved Blood.Stem Cell Rev Rep 11, no. 4 (August 2015): 652–65. https://doi.org/10.1007/s12015-015-9586-8.
Zhou H, Martinez H, Sun B, Li A, Zimmer M, Katsanis N, et al. Rapid and Efficient Generation of Transgene-Free iPSC from a Small Volume of Cryopreserved Blood. Stem Cell Rev Rep. 2015 Aug;11(4):652–65.
Zhou, Hongyan, et al. “Rapid and Efficient Generation of Transgene-Free iPSC from a Small Volume of Cryopreserved Blood.Stem Cell Rev Rep, vol. 11, no. 4, Aug. 2015, pp. 652–65. Pubmed, doi:10.1007/s12015-015-9586-8.
Zhou H, Martinez H, Sun B, Li A, Zimmer M, Katsanis N, Davis EE, Kurtzberg J, Lipnick S, Noggle S, Rao M, Chang S. Rapid and Efficient Generation of Transgene-Free iPSC from a Small Volume of Cryopreserved Blood. Stem Cell Rev Rep. 2015 Aug;11(4):652–665.

Published In

Stem Cell Rev Rep

DOI

EISSN

2629-3277

Publication Date

August 2015

Volume

11

Issue

4

Start / End Page

652 / 665

Location

United States

Related Subject Headings

  • Transgenes
  • Sendai virus
  • SOXB1 Transcription Factors
  • Receptors, Transferrin
  • Proto-Oncogene Proteins c-myc
  • Pluripotent Stem Cells
  • Octamer Transcription Factor-3
  • Leukocytes, Mononuclear
  • Kruppel-Like Transcription Factors
  • Kruppel-Like Factor 4