Modeling the Physiological Factors Affecting Glucose Sensor Function in Vivo.

Journal Article

For implantable sensors to become a more viable option for continuous glucose monitoring strategies, they must be able to persist in vivo for periods longer than the 3- to 7-day window that is the current industry standard. Recent studies have attributed such limited performance to tissue reactions resulting from implantation. While in vivo biocompatibility studies have provided much in the way of understanding histology surrounding an implanted sensor, little is known about how each constituent of the foreign body response affects sensor function. Due to the ordered composition and geometry of implant-associated tissue reactions, their effects on sensor function may be computationally modeled and analyzed in a way that would be prohibitive using in vivo studies. This review both explains how physiologically accurate computational models of implant-associated tissue reaction can be designed and shows how they have been utilized thus far. Going forward, these in silico models of implanted sensor behavior may soon complement in vivo studies to provide valuable information for improved sensor designs.

Full Text

Duke Authors

Cited Authors

  • Novak, MT; Reichert, WM

Published Date

  • June 30, 2015

Published In

Volume / Issue

  • 9 / 5

Start / End Page

  • 993 - 998

PubMed ID

  • 26134832

Electronic International Standard Serial Number (EISSN)

  • 1932-2968

Digital Object Identifier (DOI)

  • 10.1177/1932296815593094

Language

  • eng