MEMS-Based Nanomechanics: Influence of MEMS Design on Test Temperature

Published

Journal Article

Microelectromechanical system (MEMS) devices based on electro-thermal actuation have been used over the past few years to perform tensile tests on nanomaterials. However, previous MEMS designs only allowed small (e. g., <100 nm) total displacement range without a significant increase in temperature near the nanospecimens (<20°C), thereby limiting the design of the load sensor or the range of nanomaterials to test. Here we characterize the thermo-mechanical behavior of three MEMS devices, using optical displacement measurements, micro-Raman temperature measurements, and finite element modeling. We observe the increase in temperature near the nanospecimen gap per displacement of thermal actuator to linearly decrease with the distance between nanospecimen gap and thermal actuator. We also present a MEMS device that can provide up to 1.6 μm of total displacement with less than 10°C increase in temperature near the nanospecimens, more than one order of magnitude improvement with respect to previously published MEMS material testing setups. This MEMS device can be used for accurate, temperature-controlled tensile testing of nanocrystalline metallic nanobeams. © 2011 Society for Experimental Mechanics.

Full Text

Duke Authors

Cited Authors

  • Pant, B; Choi, S; Baumert, EK; Allen, BL; Graham, S; Gall, K; Pierron, ON

Published Date

  • July 1, 2012

Published In

Volume / Issue

  • 52 / 6

Start / End Page

  • 607 - 617

Electronic International Standard Serial Number (EISSN)

  • 1741-2765

International Standard Serial Number (ISSN)

  • 0014-4851

Digital Object Identifier (DOI)

  • 10.1007/s11340-011-9526-8

Citation Source

  • Scopus