High cycle fatigue mechanisms in a cast AM60B magnesium alloy

Published

Journal Article

We examine micromechanisms of fatigue crack initiation and growth in a cast AM60B magnesium alloy by relating dendrite cell size and porosity under different strain amplitudes in high cycle fatigue conditions. Fatigue cracks formed at casting pores within the specimen and near the surface, depending on the relative pore sizes. When the pore that initiated the fatigue crack decreased from approximately 110 μm to 80 μm, the fatigue life increased two times. After initiation, the fatigue cracks grew through two distinct stages before final overload specimen failure. At low maximum crack tip driving forces (Kmax < 2.3 MPa√m), the fatigue crack propagated preferentially through the α-Mg dendrite cells. At high maximum crack tip driving forces (Kmax > 2.3 MPa√m), the fatigue crack propagated primarily through the β-Al12Mg17 particle laden interdendritic regions. Based on these observations, any proposed mechanism-based fatigue model for cast Mg alloys must incorporate the change in growth mechanisms for different applied maximum stress intensity factors, in addition to the effect of pore size on the propensity to form a fatigue crack.

Full Text

Duke Authors

Cited Authors

  • Horstemeyer, MF; Yang, N; Gall, K; McDowell, D; Fan, J; Gullett, P

Published Date

  • November 1, 2002

Published In

Volume / Issue

  • 25 / 11

Start / End Page

  • 1045 - 1056

International Standard Serial Number (ISSN)

  • 8756-758X

Digital Object Identifier (DOI)

  • 10.1046/j.1460-2695.2002.00594.x

Citation Source

  • Scopus