Cast NiTi shape-memory alloys

Conference Paper

The purpose of this study is to investigate the structure and properties of polycrystalline NiTi in its cast form. Although it is commonly stated in the literature that cast NiTi has poor shape-memory behavior, this study demonstrates that with appropriate nano/micro structural design, cast NiTi possesses excellent shape-memory properties. Cast NiTi shape-memory alloys may give rise to a new palette of low-cost, complex-geometry components. Results from two different nominal compositions of cast NiTi are presented: 50.1 at.%Ni and 50.9 at.%Ni. The cast NiTi showed a spatial variance in grain size and a random grain orientation distribution throughout the cast material. However, small variances in the thermo-mechanical response of the cast material resulted. Transformation temperatures were slightly influenced by the radial location from which the material was extracted from the casting, showing a change in Differential Scanning Calorimetry peak diffuseness as well as a change in transformation sequence for the 50.9 at.%Ni material. Mildly aged 50.9 at.%Ni material was capable of full shape-memory strain recovery after being strained to 5% under compression, while the 50.1 at.%Ni demonstrated residual plastic strains of around 1.5%. The isotropic and symmetric response under tensile and compressive loading is a result of the measured random grain orientation distribution. The favorable recovery properties in the cast material are primarily attributed to the presence of nanometer scale precipitates, which inhibit dislocation motion and favor the martensitic transformation. © 2005 Materials Research Society.

Full Text

Duke Authors

Cited Authors

  • Ortega, AM; Frick, CP; Tyber, J; Gall, K; Maier, HJ

Published Date

  • January 1, 2004

Published In

Volume / Issue

  • 855 /

Start / End Page

  • 13 - 18

International Standard Serial Number (ISSN)

  • 0272-9172

International Standard Book Number 10 (ISBN-10)

  • 1558998071

International Standard Book Number 13 (ISBN-13)

  • 9781558998070

Digital Object Identifier (DOI)

  • 10.1557/proc-855-w1.8

Citation Source

  • Scopus