The Closing Mechanism of DNA Polymerase I at Atomic Resolution.

Journal Article (Journal Article)

DNA polymerases must quickly and accurately distinguish between similar nucleic acids to form Watson-Crick base pairs and avoid DNA replication errors. Deoxynucleoside triphosphate (dNTP) binding to the DNA polymerase active site induces a large conformational change that is difficult to characterize experimentally on an atomic level. Here, we report an X-ray crystal structure of DNA polymerase I bound to DNA in the open conformation with a dNTP present in the active site. We use this structure to computationally simulate the open to closed transition of DNA polymerase in the presence of a Watson-Crick base pair. Our microsecond simulations allowed us to characterize the key steps involved in active site assembly, and propose the sequence of events involved in the prechemistry steps of DNA polymerase catalysis. They also reveal new features of the polymerase mechanism, such as a conserved histidine as a potential proton acceptor from the primer 3'-hydroxyl.

Full Text

Duke Authors

Cited Authors

  • Miller, BR; Beese, LS; Parish, CA; Wu, EY

Published Date

  • September 1, 2015

Published In

Volume / Issue

  • 23 / 9

Start / End Page

  • 1609 - 1620

PubMed ID

  • 26211612

Pubmed Central ID

  • PMC5036450

Electronic International Standard Serial Number (EISSN)

  • 1878-4186

Digital Object Identifier (DOI)

  • 10.1016/j.str.2015.06.016


  • eng

Conference Location

  • United States