Identification of a Novel Coregulator, SH3YL1, That Interacts With the Androgen Receptor N-Terminus.

Published

Journal Article

Nuclear receptor (NR)-mediated transcriptional activity is a dynamic process that is regulated by the binding of ligands that induce distinct conformational changes in the NR. These structural alterations lead to the differential recruitment of coregulators (coactivators or corepressors) that control the expression of NR-regulated genes. Here, we show that a stretch of proline residues located within the N-terminus of androgen receptor (AR) is a bona fide coregulator binding surface, the disruption of which reduces the androgen-dependent proliferation and migration of prostate cancer (PCa) cells. Using T7 phage display, we identified a novel AR-interacting protein, Src homology 3 (SH3)-domain containing, Ysc84-like 1 (SH3YL1), whose interaction with the receptor is dependent upon this polyproline domain. As with mutations within the AR polyproline domain, knockdown of SH3YL1 attenuated androgen-mediated cell growth and migration. RNA expression analysis revealed that SH3YL1 was required for the induction of a subset of AR-modulated genes. Notable was the observation that ubinuclein 1 (UBN1), a key member of a histone H3.3 chaperone complex, was a transcriptional target of the AR/SH3YL1 complex, correlated with aggressive PCa in patients, and was necessary for the maximal androgen-mediated proliferation and migration of PCa cells. Collectively, these data highlight the importance of an amino-terminal activation domain, its associated coregulator, and downstream transcriptional targets in regulating cellular processes of pathological importance in PCa.

Full Text

Duke Authors

Cited Authors

  • Blessing, AM; Ganesan, S; Rajapakshe, K; Ying Sung, Y; Reddy Bollu, L; Shi, Y; Cheung, E; Coarfa, C; Chang, JT; McDonnell, DP; Frigo, DE

Published Date

  • October 2015

Published In

Volume / Issue

  • 29 / 10

Start / End Page

  • 1426 - 1439

PubMed ID

  • 26305679

Pubmed Central ID

  • 26305679

Electronic International Standard Serial Number (EISSN)

  • 1944-9917

Digital Object Identifier (DOI)

  • 10.1210/me.2015-1079

Language

  • eng

Conference Location

  • United States