Ultrahigh resolution characterization of domain motions and correlations by multialignment and multireference residual dipolar coupling NMR.

Published

Journal Article

Nuclear magnetic resonance (NMR) residual dipolar couplings (RDCs) provide a unique opportunity for spatially characterizing complex motions in biomolecules with time scale sensitivity extending up to milliseconds. Up to five motionally averaged Wigner rotation elements, (D(0k)2(alphaalpha)), can be determined experimentally using RDCs measured in five linearly independent alignment conditions and applied to define motions of axially symmetric bond vectors. Here, we show that up to 25 motionally averaged Wigner rotation elements, (D(mk)2(alphabetagamma)), can be determined experimentally from multialignment RDCs and used to characterize rigid-body motions of chiral domains. The 25 (D(mk)2(alphabetagamma)) elements form a basis set that allows one to measure motions of a domain relative to an isotropic distribution of reference frames anchored on a second domain (and vice versa), thus expanding the 3D spatial resolution with which motions can be characterized. The 25 (D(mk)2(alphabetagamma)) elements can also be used to fit an ensemble consisting of up to eight equally or six unequally populated states. For more than two domains, changing the identity of the domain governing alignment allows access to new information regarding the correlated nature of the domain fluctuations. Example simulations are provided that validate the theoretical derivation and illustrate the high spatial resolution with which rigid-body domain motions can be characterized using multialignment and multireference RDCs. Our results further motivate the development of experimental approaches for both modulating alignment and anchoring it on specifically targeted domains.

Full Text

Duke Authors

Cited Authors

  • Fisher, CK; Zhang, Q; Stelzer, A; Al-Hashimi, HM

Published Date

  • December 25, 2008

Published In

Volume / Issue

  • 112 / 51

Start / End Page

  • 16815 - 16822

PubMed ID

  • 19367865

Pubmed Central ID

  • 19367865

International Standard Serial Number (ISSN)

  • 1520-6106

Digital Object Identifier (DOI)

  • 10.1021/jp806188j

Language

  • eng

Conference Location

  • United States