Energy loss, hadronization, and hadronic interactions of heavy flavors in relativistic heavy-ion collisions


Journal Article

© 2015 American Physical Society. ©2015 American Physical Society. We construct a theoretical framework to describe the evolution of heavy flavors produced in relativistic heavy-ion collisions. The in-medium energy loss of heavy quarks is described using our modified Langevin equation that incorporates both quasielastic scatterings and the medium-induced gluon radiation. The space-time profiles of the fireball are described by a (2+1)-dimensional hydrodynamics simulation. A hybrid model of fragmentation and coalescence is utilized for heavy quark hadronization, after which the produced heavy mesons together with the soft hadrons produced from the bulk quark-gluon plasma (QGP) are fed into the hadron cascade ultrarelativistic quantum molecular dynamics (UrQMD) model to simulate the subsequent hadronic interactions. We find that the medium-induced gluon radiation contributes significantly to heavy quark energy loss at high pT; heavy-light quark coalescence enhances heavy meson production at intermediate pT; and scatterings inside the hadron gas further suppress the D meson RAA at large pT and enhance its v2. Our calculations provide good descriptions of heavy meson suppression and elliptic flow observed at both the Large Hadron Collider and the Relativistic Heavy-Ion Collider.

Full Text

Duke Authors

Cited Authors

  • Cao, S; Qin, GY; Bass, SA

Published Date

  • August 14, 2015

Published In

Volume / Issue

  • 92 / 2

Electronic International Standard Serial Number (EISSN)

  • 1089-490X

International Standard Serial Number (ISSN)

  • 0556-2813

Digital Object Identifier (DOI)

  • 10.1103/PhysRevC.92.024907

Citation Source

  • Scopus