Diverse chemical scaffolds support direct inhibition of the membrane-bound O-acyltransferase porcupine.


Journal Article

Secreted Wnt proteins constitute one of the largest families of intercellular signaling molecules in vertebrates with essential roles in embryonic development and adult tissue homeostasis. The functional redundancy of Wnt genes and the many forms of cellular responses they elicit, including some utilizing the transcriptional co-activator β-catenin, has limited the ability of classical genetic strategies to uncover their roles in vivo. We had previously identified a chemical compound class termed Inhibitor of Wnt Production (or IWP) that targets Porcupine (Porcn), an acyltransferase catalyzing the addition of fatty acid adducts onto Wnt proteins. Here we demonstrate that diverse chemical structures are able to inhibit Porcn by targeting its putative active site. When deployed in concert with small molecules that modulate the activity of Tankyrase enzymes and glycogen synthase kinase 3 β (GSK3β), additional transducers of Wnt/β-catenin signaling, the IWP compounds reveal an essential role for Wnt protein fatty acylation in eliciting β-catenin-dependent and -independent forms of Wnt signaling during zebrafish development. This collection of small molecules facilitates rapid dissection of Wnt gene function in vivo by limiting the influence of redundant Wnt gene functions on phenotypic outcomes and enables temporal manipulation of Wnt-mediated signaling in vertebrates.

Full Text

Duke Authors

Cited Authors

  • Dodge, ME; Moon, J; Tuladhar, R; Lu, J; Jacob, LS; Zhang, L-S; Shi, H; Wang, X; Moro, E; Mongera, A; Argenton, F; Karner, CM; Carroll, TJ; Chen, C; Amatruda, JF; Lum, L

Published Date

  • June 29, 2012

Published In

Volume / Issue

  • 287 / 27

Start / End Page

  • 23246 - 23254

PubMed ID

  • 22593577

Pubmed Central ID

  • 22593577

Electronic International Standard Serial Number (EISSN)

  • 1083-351X

Digital Object Identifier (DOI)

  • 10.1074/jbc.M112.372029


  • eng

Conference Location

  • United States