On curves with nonnegative torsion
Journal Article (Journal Article)
We provide new results and new proofs of results about the torsion of curves in $${\mathbb{R}^3}$$R3. Let $${\gamma}$$γ be a smooth curve in $${\mathbb{R}^3}$$R3 that is the graph over a simple closed curve in $${\mathbb{R}^2}$$R2 with positive curvature. We give a new proof that if $${\gamma}$$γ has nonnegative (or nonpositive) torsion, then $${\gamma}$$γ has zero torsion and hence lies in a plane. Additionally, we prove the new result that a simple closed plane curve, without any assumption on its curvature, cannot be perturbed to a closed space curve of constant nonzero torsion. We also prove similar statements for curves in Lorentzian $${\mathbb{R}^{2,1}}$$R2,1 which are related to important open questions about time flat surfaces in spacetimes and mass in general relativity.
Full Text
Duke Authors
Cited Authors
- Bray, HL; Jauregui, JL
Published Date
- June 29, 2015
Published In
Volume / Issue
- 104 / 6
Start / End Page
- 561 - 575
Electronic International Standard Serial Number (EISSN)
- 1420-8938
International Standard Serial Number (ISSN)
- 0003-889X
Digital Object Identifier (DOI)
- 10.1007/s00013-015-0767-0
Citation Source
- Scopus