Highly Stretchable Conductive Fibers from Few-Walled Carbon Nanotubes Coated on Poly(m-phenylene isophthalamide) Polymer Core/Shell Structures.


Journal Article

A core/shell stretchable conductive composite of a few-walled carbon nanotube network coated on a poly(m-phenylene isophthalamide) fiber (FWNT/PMIA) was fabricated by a dip-coating method and an annealing process that greatly enhanced interactions between the FWNT network and PMIA core as well as within the FWNT network. The first strain-conductivity test of the as-prepared FWNT/PMIA fiber showed a stretching-induced alignment of nanotubes in the shell during the deformation process and a good conductivity stability with a slight conductivity drop from 109.63 S/cm to 98.74 S/cm (Δσ/σ0 = 10%) at a strain of ∼150% (2.5 times the original length). More importantly, after the first stretching process, the fiber can be recovered with a slight increase in length but a greatly improved conductivity of 167.41 S/cm through an additional annealing treatment. The recovered fiber displays a similarly superb conductivity stability against stretching, with a decrease of only ∼13 S/cm to 154.49 S/cm (Δσ/σ0 = 8%) at a strain of ∼150%. We believe that this conductivity stability came from the formation and maintaining of aligned nanotube structures during the stretching process, which ensures the good tube-tube contacts and the elongation of the FWNT network without losing its conductivity. Such stable conductivity in stretchable fibers will be important for applications in stretchable electronics.

Full Text

Duke Authors

Cited Authors

  • Jiang, S; Zhang, H; Song, S; Ma, Y; Li, J; Lee, GH; Han, Q; Liu, J

Published Date

  • October 2015

Published In

Volume / Issue

  • 9 / 10

Start / End Page

  • 10252 - 10257

PubMed ID

  • 26390200

Pubmed Central ID

  • 26390200

Electronic International Standard Serial Number (EISSN)

  • 1936-086X

International Standard Serial Number (ISSN)

  • 1936-0851

Digital Object Identifier (DOI)

  • 10.1021/acsnano.5b04185


  • eng