Joint Estimation of Multiple High-dimensional Precision Matrices.
Journal Article (Journal Article)
Motivated by analysis of gene expression data measured in different tissues or disease states, we consider joint estimation of multiple precision matrices to effectively utilize the partially shared graphical structures of the corresponding graphs. The procedure is based on a weighted constrained ℓ∞/ℓ1 minimization, which can be effectively implemented by a second-order cone programming. Compared to separate estimation methods, the proposed joint estimation method leads to estimators converging to the true precision matrices faster. Under certain regularity conditions, the proposed procedure leads to an exact graph structure recovery with a probability tending to 1. Simulation studies show that the proposed joint estimation methods outperform other methods in graph structure recovery. The method is illustrated through an analysis of an ovarian cancer gene expression data. The results indicate that the patients with poor prognostic subtype lack some important links among the genes in the apoptosis pathway.
Full Text
- Published version (via Digital Object Identifier)
- Pubmed Central version
- Open Access Copy from Duke
- Link to Item
Duke Authors
Cited Authors
- Cai, TT; Li, H; Liu, W; Xie, J
Published Date
- April 2016
Published In
Volume / Issue
- 26 / 2
Start / End Page
- 445 - 464
PubMed ID
- 28316451
Pubmed Central ID
- PMC5351783
International Standard Serial Number (ISSN)
- 1017-0405
Digital Object Identifier (DOI)
- 10.5705/ss.2014.256
Language
- eng
Conference Location
- China (Republic : 1949- )