Scalable digital hardware for a trapped ion quantum computer

Published

Journal Article

© 2015, Springer Science+Business Media New York. Many of the challenges of scaling quantum computer hardware lie at the interface between the qubits and the classical control signals used to manipulate them. Modular ion trap quantum computer architectures address scalability by constructing individual quantum processors interconnected via a network of quantum communication channels. Successful operation of such quantum hardware requires a fully programmable classical control system capable of frequency stabilizing the continuous wave lasers necessary for loading, cooling, initialization, and detection of the ion qubits, stabilizing the optical frequency combs used to drive logic gate operations on the ion qubits, providing a large number of analog voltage sources to drive the trap electrodes, and a scheme for maintaining phase coherence among all the controllers that manipulate the qubits. In this work, we describe scalable solutions to these hardware development challenges.

Full Text

Duke Authors

Cited Authors

  • Mount, E; Gaultney, D; Vrijsen, G; Adams, M; Baek, SY; Hudek, K; Isabella, L; Crain, S; van Rynbach, A; Maunz, P; Kim, J

Published Date

  • December 1, 2016

Published In

Volume / Issue

  • 15 / 12

Start / End Page

  • 5281 - 5298

International Standard Serial Number (ISSN)

  • 1570-0755

Digital Object Identifier (DOI)

  • 10.1007/s11128-015-1120-z

Citation Source

  • Scopus