Skip to main content
Journal cover image

Urinary catheter capable of repeated on-demand removal of infectious biofilms via active deformation.

Publication ,  Journal Article
Levering, V; Cao, C; Shivapooja, P; Levinson, H; Zhao, X; López, GP
Published in: Biomaterials
January 2016

Biofilm removal from biomaterials is of fundamental importance, and is especially relevant when considering the problematic and deleterious impact of biofilm infections on the inner surfaces of urinary catheters. Catheter-associated urinary tract infections are the most common cause of hospital-acquired infections and there are over 30 million Foley urinary catheters used annually in the USA. In this paper, we present the design and optimization of urinary catheter prototypes capable of on-demand removal of biofilms from the inner luminal surface of catheters. The urinary catheters utilize 4 intra-wall inflation lumens that are pressure-actuated to generate region-selective strains in the elastomeric urine lumen, and thereby remove overlying biofilms. A combination of finite-element modeling and prototype fabrication was used to optimize the catheter design to generate greater than 30% strain in the majority of the luminal surface when subjected to pressure. The catheter prototypes are able to remove greater than 80% of a mixed community biofilm of Proteus mirabilis and Escherichia coli on-demand, and furthermore are able to remove the biofilm repeatedly. Additionally, experiments with the prototypes demonstrate that biofilm debonding can be achieved upon application of both tensile and compressive strains in the inner surface of the catheter. The fouling-release catheter offers the potential for a non-biologic, non-antibiotic method to remove biofilms and thereby for impacting the thus far intractable problem of catheter-associated infections.

Altmetric Attention Stats
Dimensions Citation Stats

Published In

Biomaterials

DOI

EISSN

1878-5905

Publication Date

January 2016

Volume

77

Start / End Page

77 / 86

Location

Netherlands

Related Subject Headings

  • Urinary Tract Infections
  • Urinary Catheters
  • Urinary Catheterization
  • Stress, Mechanical
  • Proteus mirabilis
  • Pressure
  • Models, Theoretical
  • Humans
  • Finite Element Analysis
  • Escherichia coli
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Levering, V., Cao, C., Shivapooja, P., Levinson, H., Zhao, X., & López, G. P. (2016). Urinary catheter capable of repeated on-demand removal of infectious biofilms via active deformation. Biomaterials, 77, 77–86. https://doi.org/10.1016/j.biomaterials.2015.10.070
Levering, Vrad, Changyong Cao, Phanindhar Shivapooja, Howard Levinson, Xuanhe Zhao, and Gabriel P. López. “Urinary catheter capable of repeated on-demand removal of infectious biofilms via active deformation.Biomaterials 77 (January 2016): 77–86. https://doi.org/10.1016/j.biomaterials.2015.10.070.
Levering V, Cao C, Shivapooja P, Levinson H, Zhao X, López GP. Urinary catheter capable of repeated on-demand removal of infectious biofilms via active deformation. Biomaterials. 2016 Jan;77:77–86.
Levering, Vrad, et al. “Urinary catheter capable of repeated on-demand removal of infectious biofilms via active deformation.Biomaterials, vol. 77, Jan. 2016, pp. 77–86. Pubmed, doi:10.1016/j.biomaterials.2015.10.070.
Levering V, Cao C, Shivapooja P, Levinson H, Zhao X, López GP. Urinary catheter capable of repeated on-demand removal of infectious biofilms via active deformation. Biomaterials. 2016 Jan;77:77–86.
Journal cover image

Published In

Biomaterials

DOI

EISSN

1878-5905

Publication Date

January 2016

Volume

77

Start / End Page

77 / 86

Location

Netherlands

Related Subject Headings

  • Urinary Tract Infections
  • Urinary Catheters
  • Urinary Catheterization
  • Stress, Mechanical
  • Proteus mirabilis
  • Pressure
  • Models, Theoretical
  • Humans
  • Finite Element Analysis
  • Escherichia coli