Multi-organ segmentation from multi-phase abdominal CT via 4D graphs using enhancement, shape and location optimization.

Journal Article (Journal Article)

The interpretation of medical images benefits from anatomical and physiological priors to optimize computer-aided diagnosis (CAD) applications. Diagnosis also relies on the comprehensive analysis of multiple organs and quantitative measures of soft tissue. An automated method optimized for medical image data is presented for the simultaneous segmentation of four abdominal organs from 4D CT data using graph cuts. Contrast-enhanced CT scans were obtained at two phases: non-contrast and portal venous. Intra-patient data were spatially normalized by non-linear registration. Then 4D erosion using population historic information of contrast-enhanced liver, spleen, and kidneys was applied to multi-phase data to initialize the 4D graph and adapt to patient specific data. CT enhancement information and constraints on shape, from Parzen windows, and location, from a probabilistic atlas, were input into a new formulation of a 4D graph. Comparative results demonstrate the effects of appearance and enhancement, and shape and location on organ segmentation.

Full Text

Duke Authors

Cited Authors

  • Linguraru, MG; Pura, JA; Chowdhury, AS; Summers, RM

Published Date

  • January 2010

Published In

  • Medical Image Computing and Computer Assisted Intervention : Miccai ... International Conference on Medical Image Computing and Computer Assisted Intervention

Volume / Issue

  • 13 / Pt 3

Start / End Page

  • 89 - 96

PubMed ID

  • 20879387

Pubmed Central ID

  • PMC3005190

Digital Object Identifier (DOI)

  • 10.1007/978-3-642-15711-0_12


  • eng