Magnetophoretic Conductors and Diodes in a 3D Magnetic Field.


Journal Article

We demonstrate magnetophoretic conductor tracks that can transport single magnetized beads and magnetically labeled single cells in a 3-dimensional time-varying magnetic field. The vertical field bias, in addition to the in-plane rotating field, has the advantage of reducing the attraction between particles, which inhibits the formation of particle clusters. However, the inclusion of a vertical field requires the re-design of magnetic track geometries which can transport magnetized objects across the substrate. Following insights from magnetic bubble technology, we found that successful magnetic conductor geometries defined in soft magnetic materials must be composed of alternating sections of positive and negative curvature. In addition to the previously studied magnetic tracks taken from the magnetic bubble literature, a drop-shape pattern was found to be even more adept at transporting small magnetic beads and single cells. Symmetric patterns are shown to achieve bi-directional conduction, whereas asymmetric patterns achieve unidirectional conduction. These designs represent the electrical circuit corollaries of the conductor and diode, respectively. Finally, we demonstrate biological applications in transporting single cells and in the size based separation of magnetic particles.

Full Text

Duke Authors

Cited Authors

  • Abedini-Nassab, R; Joh, DY; Van Heest, M; Baker, C; Chilkoti, A; Murdoch, DM; Yellen, BB

Published Date

  • June 14, 2016

Published In

Volume / Issue

  • 26 / 22

Start / End Page

  • 4026 - 4034

PubMed ID

  • 27418922

Pubmed Central ID

  • 27418922

International Standard Serial Number (ISSN)

  • 1616-301X

Digital Object Identifier (DOI)

  • 10.1002/adfm.201503898


  • eng

Conference Location

  • Germany