Identifying predictive metrics for supervisory control of multiple robots


Conference Paper

In recent years, much research has focused on making possible single-operator control of multiple robots. In these high workload situations, many questions arise including how many robots should be in the team, which autonomy levels should they employ, and when should these autonomy levels change? To answer these questions, sets of metric classes should be identified that capture these aspects of the human-robot team. Such a set of metric classes should have three properties. First, it should contain the key performance parameters of the system. Second, it should identify the limitations of the agents in the system. Third, it should have predictive power. In this paper, we decompose a human-robot team consisting of a single human and multiple robots in an effort to identify such a set of metric classes. We assess the ability of this set of metric classes to: 1) predict the number of robots that should be in the team and 2) predict system effectiveness. We do so by comparing predictions with actual data from a user study, which is also described. © 2007 IEEE.

Full Text

Duke Authors

Cited Authors

  • Crandall, JW; Cummings, ML

Published Date

  • October 1, 2007

Published In

Volume / Issue

  • 23 / 5

Start / End Page

  • 942 - 951

International Standard Serial Number (ISSN)

  • 1552-3098

Digital Object Identifier (DOI)

  • 10.1109/TRO.2007.907480

Citation Source

  • Scopus