MEK1/2 inhibitors reverse acute vascular occlusion in mouse models of sickle cell disease.

Published

Journal Article

In sickle cell disease (SCD), treatment of recurrent vasoocclusive episodes, leading to pain crises and organ damage, is still a therapeutic challenge. Vasoocclusion is caused primarily by adherence of homozygous for hemoglobin S (SS) red blood cells (SSRBCs) and leukocytes to the endothelium. We tested the therapeutic benefits of MEK1/2 inhibitors in reversing vasoocclusion in nude and humanized SCD mouse models of acute vasoocclusive episodes using intravital microscopy. Administration of 0.2, 0.3, 1, or 2 mg/kg MEK1/2 inhibitor to TNF-α-pretreated nude mice before human SSRBC infusion inhibited SSRBC adhesion in inflamed vessels, prevented the progression of vasoocclusion, and reduced SSRBC organ sequestration. By use of a more clinically relevant protocol, 0.3 or 1 mg/kg MEK1/2 inhibitor given to TNF-α-pretreated nude mice after human SSRBC infusion and onset of vasoocclusion reversed SSRBC adhesion and vasoocclusion and restored blood flow. In SCD mice, 0.025, 0.05, or 0.1 mg/kg MEK1/2 inhibitor also reversed leukocyte and erythrocyte adhesion after the inflammatory trigger of vasoocclusion and improved microcirculatory blood flow. Cell adhesion was reversed by shedding of endothelial E-selectin, P-selectin, and αvβ3 integrin, and leukocyte CD44 and β2 integrin. Thus, MEK1/2 inhibitors, by targeting the adhesive function of SSRBCs and leukocytes, could represent a valuable therapeutic intervention for acute sickle cell vasoocclusive crises.

Full Text

Duke Authors

Cited Authors

  • Zhao, Y; Schwartz, EA; Palmer, GM; Zennadi, R

Published Date

  • March 2016

Published In

Volume / Issue

  • 30 / 3

Start / End Page

  • 1171 - 1186

PubMed ID

  • 26631480

Pubmed Central ID

  • 26631480

Electronic International Standard Serial Number (EISSN)

  • 1530-6860

Digital Object Identifier (DOI)

  • 10.1096/fj.15-278481

Language

  • eng

Conference Location

  • United States