Enzymatic and Structural Characterization of the Major Endopeptidase in the Venus Flytrap Digestion Fluid.


Journal Article

Carnivorous plants primarily use aspartic proteases during digestion of captured prey. In contrast, the major endopeptidases in the digestive fluid of the Venus flytrap (Dionaea muscipula) are cysteine proteases (dionain-1 to -4). Here, we present the crystal structure of mature dionain-1 in covalent complex with inhibitor E-64 at 1.5 Å resolution. The enzyme exhibits an overall protein fold reminiscent of other plant cysteine proteases. The inactive glycosylated pro-form undergoes autoprocessing and self-activation, optimally at the physiologically relevant pH value of 3.6, at which the protective effect of the pro-domain is lost. The mature enzyme was able to efficiently degrade a Drosophila fly protein extract at pH 4 showing high activity against the abundant Lys- and Arg-rich protein, myosin. The substrate specificity of dionain-1 was largely similar to that of papain with a preference for hydrophobic and aliphatic residues in subsite S2 and for positively charged residues in S1. A tentative structure of the pro-domain was obtained by homology modeling and suggested that a pro-peptide Lys residue intrudes into the S2 pocket, which is more spacious than in papain. This study provides the first analysis of a cysteine protease from the digestive fluid of a carnivorous plant and confirms the close relationship between carnivorous action and plant defense mechanisms.

Full Text

Cited Authors

  • Risør, MW; Thomsen, LR; Sanggaard, KW; Nielsen, TA; Thøgersen, IB; Lukassen, MV; Rossen, L; Garcia-Ferrer, I; Guevara, T; Scavenius, C; Meinjohanns, E; Gomis-Rüth, FX; Enghild, JJ

Published Date

  • January 2016

Published In

Volume / Issue

  • 291 / 5

Start / End Page

  • 2271 - 2287

PubMed ID

  • 26627834

Pubmed Central ID

  • 26627834

Electronic International Standard Serial Number (EISSN)

  • 1083-351X

International Standard Serial Number (ISSN)

  • 0021-9258

Digital Object Identifier (DOI)

  • 10.1074/jbc.m115.672550


  • eng